If it's not what You are looking for type in the equation solver your own equation and let us solve it.
89x^2+4x-24=0
a = 89; b = 4; c = -24;
Δ = b2-4ac
Δ = 42-4·89·(-24)
Δ = 8560
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8560}=\sqrt{16*535}=\sqrt{16}*\sqrt{535}=4\sqrt{535}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{535}}{2*89}=\frac{-4-4\sqrt{535}}{178} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{535}}{2*89}=\frac{-4+4\sqrt{535}}{178} $
| 6f+30=4f+10= | | 1+3=(4n+6) | | n+3.8=11.2 | | x-15.5=20 | | 5l=1/25 | | i=087 | | -2(3x+10)=-26 | | 5(2x+-3)=35 | | 20=5+2x | | x+95=100 | | -4u-10=10-9u | | 7n^2+21=0 | | -3(x+4)-8=19 | | 2z+10=40 | | 9x-6+3x=9 | | 1/2n+30=60 | | 2r=1218 | | 9e+1=5e+29= | | q–4.3=9.2 | | 2x+4x-2=150 | | -8x-2=-53 | | n+8=33 | | 46-x=30 | | 6x+7=4x=15 | | 7b+9=-4b-9 | | 5x+10+x=34 | | | | | | | | | | | | |